

Materials Considerations for Rapid Charging

Gleb Yushin

yushin@gatech.edu; www.nano-tech.gatech.edu

School of Materials Science & Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA

"6 C" rate, if total battery pack lasts for ~ 300 miles

Charging > 30 miles/min: "20 C" rate, if ~ 100 miles

"60 C" rate, if ~ 30 miles

General Challenge: high current heating losses & degradation

Solutions:

Efficient Cooling

- Cooling (heat dissipation) reduces degradation, but not losses
- The proper cooling should be LOCAL (within the electrode) because nearly all degradation phenomena are thermally activated and local

VS.

Low Resistance

- Minimizes degradation & losses
 - Resistance faced by ions
 - in electrolyte
 - within active particles
 - through SEI (for batteries)
 - Resistance faced by electrons

Rational design of the architecture of battery electrodes allows one to dramatically enhance electrical, ionic and thermal conductivities

Traditional Electrode Architecture:

\Rightarrow

Alternative Architectures:

Evanoff, K. et. al, *Advanced Materials*, 24(4), p. 533, 2011

Low electrical conductivity

Low thermal conductivity

Evanoff, K. et. al, **Advanced Energy Materials**, (in review) 2012

Rational design of the architecture of battery electrodes allows one to dramatically enhance electrical, ionic and thermal conductivities

✓ > 100 times lower electrical resistance than that of nanopowder electrode with much higher density but comparable thickness ✓ > 1000 times higher thermal conductivity as compared to nanopowder electrode with much higher density but comparable thickness

Evanoff, K. et. al, *Advanced Materials*, 24(4), p. 533, 2011

More traditional technology: nanostructured (NOT nano-sized) particles

- ✓ "self-assembled" carbon scaffold for high thermal and electrical conductivities
- ✓ internal pores for rapid electrolyte access.

A. Magasinski, et. al, **Nature Materials**, 2010, 9, 353

I. Kovalenko, et. al,

(6052) p. 75-79

- Fast ion transport within electrolyte possible?
 - ✓ YES, but need to invent novel electrolytes.
- ✓ Supercapacitors (200 um thick electrodes with sub-nm pores) can be charged @ "30,000 C" rate

- ✓ YES, but need to invent novel synthetic SEI
- ✓ As additional benefit longer cycle life and lower irreversible capacity losses (!) **Science**, 2011, 333

